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INTRODUCTION: 

This work develops new functional diagnostics and treatments for Parkinson's 
disease (PD) from pre-clinical experiments in primate models of neurotoxically induced 
PD. Given that (1) dopamine (DA) neurons die and a stable PD-like behavioral 
syndrome appears in primates after chronic administration of a neurotoxin: l-methyl-4- 
phenyl-l,2,3,6-tetrahydropyridine (MPTP), (2) loss of dopaminergic axon can be 
diagnostically detected by positron emission tomography (PET) and ligands to label 
striatal DA reuptake sites, (3) neural transplantation may replace neurotoxically 
eliminated neurons and reverse PD-like symptoms and drug induced side effects, we 
will now determine how implanted fetal porcine neural DA and control non-DA cells 
can repair neural systems and reverse behavioral deficits. Pallidotomy is tested as a 
parallel therapeutic method. We will measure DA receptors and cerebral oxidative 
glucose metabolism by PET and neuroanatomy, hemodynamics, levels and profiles of 
brain tissue neurochemicals by MRI/MRS in rodent and primate animal models. The 
data-sets from PET and MRI/MRS are correlated with behavioral and post-mortem 
studies. This project develops 1) objective in vivo measurements of brain damage 
associated with neurotoxins and 2) therapies for neurotoxically induced PD. 

BODY: 

We describe below the research accomplishments associated with the approved 
Statement of Work, which is copied here in bold. The publications and figures 
referenced are attached in the Appendix. 

STATEMENT OF WORK 

WE WILL DETERMINE AND DEVELOP NOVEL DIAGNOSITC CRITERIA FOR 
ACUTE NEUROTOXICITY AND LONG-TERM DEGENERATION OF THE 
DOPAMINE SYSTEM (OBJECTIVE 1) 

Starting in year 1, and continuing through year 3, we determine in MPTP induced 
primate parkinsonism, the consequences of acute neurotoxicity (ANT). The 
following questions are answered in this sequence: 

Step 1.1. Are there changes in dopamine reuptake sites or dopamine receptors in 
ANT? 

Our results indicate that there is a rapid loss of dopamine reuptake sites and 
corresponding upregulation of dopamine receptors in ANT. (Fig. 2a, appendix). 
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Step 1.2. Is there any sign of oxidative stress in ANT? 

Our results indicate that there are dramatic signs of oxidative stress in ANT that 
(see below) continues after chronic loss of dopamine neurons. (Brownell et al 1998,1999, 
appendix). 

Step 1.3. Are there changes in tissue neurochemical profiles in ANT? 

Our results indicate that there are initial progressive changes in the 
neurochemical profile such that while there are increases in choline and decreases in 
NAA, there are parallel increases in lactate and macromolecules paralleling Parkinson's 
disease. (Brownell et al 1998 and Fig. 1-2, appendix). 

Step 1.4. Are there hemodynamic changes observable in ANT? 

This work is in progress. 

Step 1.5. Is there any change in behavioral locomotor activity in ANT? 

Our results indicate that there is a rapid loss of locomotor activity which parallels 
the neurotoxic syndrome. However, this change does not become overt Parkinsonism 
until a chronic stage of at least 70-80% loss of dopamine. (Brownell et al 1998,1999, 
appendix). 

The specific biological questions during longer-term degeneration are studied in 
years 2-4: 
Step 1.6. Does the initial DA loss trigger metabolic and/or neurochemical changes 
over time in non-DA systems? 

The initial dopamine loss triggers long-term changes in non-dopamine systems. 
We have found that after neurotoxic loss, there are MRI/MRS changes that are 
detectable up to two and a half years after the end of the neurotoxin treatment. 
Similarly, the initial loss of dopamine induces a cascade of degenerations that persist for 
and terminate years after the initial toxic exposure. (Brownell et al 1998,1999, 
appendix). 

Step 1.7 As an endpoint of stable Parkinsonism longitudinal studies will be 
correlated with clinically relevant behavior in a slowly progressing primate 
Parkinson disease model. 

These studies are ongoing and indicate that Parkinson's disease is mirrored very 
closely by MPTP toxin treatment. 

The PET studies using nCFT show the binding to dopamine reuptake sites and nC- 
raclopride to dopamine D2 receptors. Oxidative stress was observed by PET studies 
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of oxidative metabolism (oxygen extraction fraction, oxygen metabolism and glucose 
metabolism) as well as MRS studies of lactate/lipid peaks. MRS studies 
simultaneously show a number of tissue neurochemicals: choline, creatine, N- 
acetylaspartate, myo-inositol. Functional MR imaging will provide maps of 
hemodynamic indices over the entire brain. Locomotor activity is measured in 
parallel. 

IN EXPERIMENTAL PD MODELS, WE WILL DETERMINE THE MECHANISMS 
BEHIND EFFECTS OF THERAPEUTIC INTERVENTIONS WITH FETAL 
NEURONS OR PALLIDOTOMY (OBJECTIVE 2) 

Therapeutic interventions will be investigated in combination with PET and 
MRI/MRS and locomotor activity studies.   Initiated in year 1, but continuing 
through year 4 we will answer the following biological questions in a primate PD 
model: 

Step 2.1. Is there change in dopamine reuptake sites or dopamine receptors after 
transplantation with DA or non-DA neurons? 

Summary of transplantation data provided in Fig. 3. We are in progress on PET 
scanning for grafted animals. 

Step 2.2. Has oxidative stress recovered after transplantation with DA or non-DA 
neurons? 

The initial studies on xenogeneic transplantation in this Parkinson's model are in 
progress (n=l), but preliminary data suggest a normalization. 

Step 2.3. Are there changes in tissue neurochemical profiles after transplantation 
with DA or non-DA neurons? 

Tissue neurochemical profiles when there are surviving grafts appear to be 
normalized by the transplantation. 

Step 2.4. Is there vascular arborization after transplantation with DA or non-DA 
neurons? 

The initial studies on xenogeneic transplantation in this Parkinson's model are in 
progress. 

Step 2.5.1s there change in locomotor activity after transplantation with DA or non- 
DA neurons? 

The initial studies on xenogeneic transplantation in this Parkinson's model are in 
progress. 
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Step 2.6. Does pallidotomy effect on regional blood flow, oxygen extraction fraction, 
oxygen or glucose metabolism? 

These studies are in progress. 

Step 2.7. Does pallidotomy have any effect on dopamine reuptake sites or dopamine 
receptors? 

These studies are in progress. 

Step 2.8. Does pallidotomy have any effect on neurochemicals? 

These studies are in progress. 

Step 2.9. Does pallidotomy effect on behavioral locomotor activity? 

These studies are in progress. 

Step 2.10. The endpoint correlation of parameters derived of imaging studies with 
behavioral studies and post-mortem histology. 

These studies are in progress. Preliminary data indicate that the imaging studies 
are highly predictive of the postmortem analysis of remaining or degenerated 
dopamine fibers. 

KEY RESEARCH ACCOMPLISHMENTS: 

• Neurotoxin treatment with oxidative stress with complex I inhibitors (toxin: MPTP) 
creates a syndrome identical to Parkinson's disease 

• The acute neurotoxic treatment with MPTP creates an immediate loss of dopamine 
terminals and a compensatory up-regulation of dopamine receptors 

• Magnetic resonance spectroscopy (MRS) indicates a 23-fold increase in lactate and 
macromolecules that persist for up to 10 months after neurotoxin administration 

• The MRS lactate and macromolecule values return to normal by two years after the 
final MPTP toxin exposure. 

• There are persistent increases in striatal choline (gliosis and inflammatory response) 
and decreases in NAA (loss of dopaminergic and neuronal elements for chronic 
periods extend beyond two years). 

• The progressive loss of dopamine terminals following neurotoxin exposure follows 
an exponential curve and a mathematical model similar to cell survival theory. 
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• The MPTP primate model has MRI and MRS spectra similar to Parkinson's patients. 
The predictive value of the equations for this degeneration phenomena provide an 
opportunity for protective treatments. 

• These neurotoxin models with the oxidative damage simulate all known aspects of 
idiopathic Parkinson's disease. 

REPORT ABLE OUTCOMES: 

Manuscripts: 

1. Isacson, O., Deacon, T. and Schumacher, J. (1998) Immunobiology and Neuroscience 
of Xenotransplantation in Neurological Disease. In: CNS Regeneration: Basic 
Science and Clinical Advances, M.H. Tuszynski and J.H. Kordower, eds., Academic 
Press, San Diego, pp. 365-387. 

2. Brownell, A.-L., Jenkins, B.G., Elmaleh, D.R., Deacon, T.W., Spealman, R.D., Isacson, 
O. (1998) Combined PET/MRS studies of the brain reveal dynamic and long-term 
physiological changes in a Parkinson's disease primate model. Nature Med. 4,1308- 
1312. 

3. Costantini, L.C. and Isacson, 0.(1999) Dopamine neuron grafts: development and 
molecular biology. In: Dopamine Neuron Development, U. di Porzio, R. Pernas- 
Alonso and C. Perone-Capano, eds., R.G. Landes Company, Georgetown, in press. 

4. Isacson, O. and Sladek, J. (1999) Cellular and Molecular Treatments of Neurological 
Diseases. Exp. Neurol. 159,1-3. 

5. Brownell, A-L, Jenkins, B. and Isacson, O. (1999) Dopamine Imaging Markers and 
Predictive Mathematical Models for Progressive Degeneration in Parkinson's 
Disease. Biomedicine & Pharmacotherapy 53,131-140. 

6. Fink, J.S., Schumacher, J.M., Ellias, S.L., Palmer, E.P., Saint-Hilaire, M., Shannon, K., 
Perm, R., Starr, P., van Home, C, Kott, H.S., Dempsey, P.K., Fischman, A.J., Raineri, 
R., Manhart, C, Dinsmore, J., Isacson, O. (1999) Porcine xenografts in Parkinson's 
disease and Huntington's disease patients: tentative outcomes. Cell Transplant., in 
press. 

Abstracts: 

1. A.L. Brownell, B.G. Jenkins, D.R. Elmaleh, T.W. Deacon, O. Isacson, Long-Term In 
Vivo PET/MRS Neurodegeneration Studies of a Primate Parkinson's Disease Model, 
Soc. Neurosci. 1998. 

2. O. Isacson, Transplantation Approaches in Parkinson's Disease, 5th International 
Congress of Parkinson's Disease and Movement Disorders, New York City, New 
York October 10-14,1998. 

3. O. Isacson, Cell transplantation as a therapy for Parkinson's Disease, The 
Physiological Society, Cardiff, Wales, Dec. 18,1998. 

4. O. Isacson, Primary Neuronal Cell Transplantation for Parkinson's Disease, The Cell 
Transplant Society, Montreux, Switzerland, Mar. 21-24,1999. 
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5. O. Isacson, Neural Xenotransplantation for Neurodegenerative Disease, Keystone 
Symposia on Molecular and Cellular Biology, Lake Tahoe, NV, Mar. 21-26,1999. 

6. T.W. Deacon, W. Fodor, S. Rollins, S. Squinto, L.C. Costantini, L. Matis, L. Bell and 
O. Isacson. Xenotransplantation of transgenic fetal pig dopamine neurons. 
American Society for Neural Transplantation, 1999. 

7. Isacson O, Deacon TW, Costantini LC & Brownell AL. Animal models of PD: novel 
neuroprotection and cell implantation paradigms. Intl. Transplant. Soc, Vancouver, 
BC, Aug. 26-28,1999. 

8. O. Isacson. Dopamine neuron transplantation: pharmacological and behavioral 
aspects. Behavioral Pharmacology Meeting, Boston, MA, Sept. 1-4,1999. 

9. O. Isacson. Neural Transplantation in Neurodegenerative Diseases. Year of the 
Brain Intl. Symp., Vienna, Oct. 1-3,1999. 

10. A.-L. Brownell, T. van Nguyen, Y-C. J. Chen, F. Cavagna, B.R. Bosen, O. Isacson, 
B.Q. Jenkins. PET and phMRI sutides of dopamine receptor modulation in PD 
models. Soc. Neurosci. 1999. 

Presentations: 

1998   New York, NY, 5th Intl. Congress of Parkinson's Disease and Movement 
Disorders. "Gene Therapy for Parkinsons' Disease", (plenary lecture) 

1998   Tokyo, Japan,The Molecular Medicine Revolution Conference, "Neural cell 
transplants to physiologically repair circuitry in neurodegenerative diesease" 
(plenary lecture) 

1998 Cardiff, Wales, The Physiological Society, "Cell transplantation as a therapy for 
Parkinson's disease" (lecture) 

1999 Cornell Medical School/New York Hospital "Developing nerve cells against 
neurodegeneration" (grand rounds & lecture) 

1999   Montreux, Switzerland, The Cell Transplant Society, "Primary neuronal cell 
transplantation for Parkinson's disease (lecture) 

1999    Keystone Symposia, "Neural xenotransplantation for neurodegenerative disease" 
(lecture) 

1999   Dalhousie University, Halifax, Clinical Neuroscience (rounds) and Dept. of 
Anatomy and Neurobiology (lecture) 

1999   University of Pittsburgh Medical Center, Dept. of Pathology (lecture) 
1999   University of Rochester, Experimental Therapeutics Workshop (lecture) and 

Neurology Grand Rounds 
1999   Vancouver, BC, XHIth Intl. Congress on Parkinson's Disease (lecture) 
1999    Odense, Denmark, 7th Intl. Neural Transplantation Meeting (lecture) 
1999   Boston, European Behavioral Pharmacology Society and Behavioral 

Pharmacology Society Conference (lecture) 
1999   Austrian Parkinson Society, Vienna (lecture) 
1999   Bonn, Intl. Neuroscience Symposium "Molecular Basis of CNS Disorders" 

(lecture) 
1999   London, The Novartis Foundation "Neural Transplantation in 

Neurodegenerative Disease" (Discussant) 
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CONCLUSIONS: 

Our findings using in vivo PET/MRS brain imaging indicate that there are very 
complex and dynamic changes following toxin exposure that is similar to Parkinson's 
disease in most respects. The studies provide us with exact mathematical models for 
which both the degeneration and neuroprotection interventions can be tested. This 
work is valuable both as an exact theoretical analysis, as well as an indepth study of 
neurotoxin exposure that creates Parkinson's disease. Many molecules in the 
environment and potentially administered toxins can simulate the action of these 
molecules, which in acute or with repeated exposure could increase the risk of 
Parkinson's disease. The value of this study is also that it allows neuroprotection 
studies to be initiated and/or neural replacement studies by transplantation to present 
or repair these toxic changes. 

APPENDICES: 

Figures 1,2,3 and Figure Legends 

Publications: 

Brownell, A.-L., Livni, E., Galpem, W., and Isacson, O. (1998) In vivo PET imaging in rat 
of dopamine terminals reveals functional neural transplants. Ann. Neurol., 43,387-390 

Brownell, A-L, Jenkins, B. and Isacson, O. (1999) Dopamine Imaging Markers and 
Predictive Mathematical Models for Progressive Degeneration in Parkinson's Disease. 
Biomedicine & Pharmacotherapy 53,131-140. 

Curriculum Vitae: Dr. Ole Isacson 
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Figure Legends 

Figures 1. A follow-up study of comparative distribution of pre-synaptic dopamine 
transporters with PET using 11C-CFT in a primate Parkinson disease model. 
(a) Five representative coronal brain levels (A25, A20, A15, A10 and P5) are presented before 
(control), 1 and 2 months after acute MPTP treatment. Images show nC-CFT distribution in the 
brain 40-45 min after injection of the labeled ligand. (b) Time-activity curves show time 
dependent distribution of nC-CFT in putamen, caudate and cerebellum before and 2 months 
after MPTP treatment. 

Figures 2. A parallel follow-up study (Figures 1) of comparative distribution ofpost-synaptic 
dopamine D2 receptors with PET using llC-raclopride. 
(a) Four representative coronal brain levels (A25, A20, A15 and A10) are presented before and 
2 months after MPTP treatment. Images show uC-raclopride distribution in the brain 60-64 min 
after injection of "C-raclopride. (b) Time-activity curves show time dependent distribution of 
nC-raclopride in the same brain areas as Figure lb before and 2 months after MPTP. 

Figure 3. CD59 Transgenic Fetal Pig Graft in monkey MJ281.98. 
This case was distinguished by continuous cyclosporine delivery via a jugular catheter using an 
infusion pump. After 9 weeks survival histology demonstrated a large densely compacted graft 
(see Nissl; far left), that immunostained positive for TH, the pig-specific markers NF70 and 
CD44, and weakly for the transgene product CD59. 
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Combined PET/MRS brain studies show dynamic 
and long-term physiological changes in a 

primate model of Parkinson disease 

ANNA-LIISA BROWNELL
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, 
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Harvard Medical School, Boston, Massachusetts 02114, USA 3Neuroregeneration Laboratories, McLean Hospital, 
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4New England Regional Primate Research Center, Southborough, Massachusetts 01772, USA 

Correspondence should be addressed to O.I. 

We used brain imaging to study long-term neurodegenerative and bioadaptive neurochemical 
changes in a primate model of Parkinson disease. We gradually induced a selective loss of nigros- 
triatal dopamine neurons, similar to that of Parkinson disease, by creating oxidative stress 
through infusion of the mitochondrial complex 1 inhibitor MPTP for 14 ± 5 months. Repeated 
evaluations over 3 years by positron emission tomography (PET) demonstrated progressive and 
persistent loss of neuronal dopamine pre-synaptic re-uptake sites; repeated magnetic resonance 
spectroscopy (MRS) studies indicated a 23-fold increase in lactate and macromolecules in the 
striatum region of the brain for up to 10 months after the last administration of MPTP. By 2 years 
after the MPTP infusions, these MRS striatal lactate and macromolecule values had returned to 
normal levels. In contrast, there were persistent increases in striatal choline and decreases in N- 
acetylaspartate. Thus, these combined PET/MRS studies demonstrate patterns of neurochemical 
changes that are both dynamic and persistent long after selective dopaminergic degeneration. 

In neurological diseases like Parkinson disease (PD), examina- 
tion of the living brain by high resolution positron emission to- 
mography (PET) and magnetic resonance imaging (MR), 
combined with the appropriate pharmaco-kinetic and physio- 
logical analyses, can provide valuable quantitative information 
of altered brain function1,2. Imaging technology depends on the 
limits of imaging (resolution and sensitivity) as well as biologi- 
cal variables (tissue structure and biochemical processes)(refs. 
3-6). In applications involving the human brain, recent 
progress in obtaining localized magnetic resonance spectra 
(MRS) and spectroscopic images has made possible new studies 
of tumors7,8 and infarcts9,10, as well as examination of normal 
brain physiology11. 

The most prominent pathological change in idiopathic 
Parkinson disease is degeneration of the nigrostriatal- 
dopaminergic pathway associated with severe cell loss in the 

substantia nigra12. In patients, a chief consequence of the loss 
of dopamine (DA) neurons is a substantial decrease in the 
density of dopaminergic synapses and in the concentrations of 
DA in the striatum13,14. The striatal loss of DA results in typical 
signs, including akinesia, bradykinesia, rigidity and resting 
tremor. These findings led to experiments aimed at developing 
animal models of PD using neurotoxins; such as 6-hydroxy- 
dopamine15,16, selective for DA neurons. Some cases of parkin- 
sonism have developed after accidental intravenous 
self-administration of a meperidine analogue; l-methyl-4- 
phenyl-1,2,3,6 tetrahydropyridine17 (MPTP). The affected indi- 
viduals had symptoms that included severe akinesia, rigidity, 
flexed posture and a resting tremor. The symptoms were associ- 

ated with decreased striatal 18F-fluoro-L-dopa uptake, observed 
using PET18, and considerable loss of pigmented neurons in the 
substantia nigra. 

In primates, administration of MPTP by stereotaxic applica- 
tion in the striatum, intra-carotid injections or repeated intra- 
venous injection over 5-10 days19-21 generally induces a 
substantial DA depletion resulting in a severe akineto-rigid PD 
syndrome (often requiring drug therapy) within weeks after ad- 
ministration of the neurotoxin. In contrast, repeated low-dose 
administration of MPTP over a longer period of time (up to 19 
months) increases the selectivity of the neurotoxin for specific 
subpopulations of DA neurons, more accurately reproducing 
the pattern of neuropathological and neurochemical alter- 
ations observed in idiopathic PD22,23. In this chronic adminis- 
tration model, and in idiopathic PD5,24, signs develop gradually, 
and after these signs appear they do not spontaneously recover 
as reported in some acute MPTP models25. This animal model 
therefore represents a stable parkinsonian syndrome, which is 
necessary for the exploration of long-term functional changes 
and experimental therapies. 

The ability of MRS to sensitively measure neurochemicals in 
brain volumes less than 1 ml provides a unique 'window' into 
neurodegenerative processes. MRS is especially useful because 
it allows quantification of different chemicals in a single stuuy, 
which can be repeated many times. Chemicals quantifiable in 
proton MRS include N-acetyl aspartate (NAA), a correlate 
marker for healthy mature neurons26,27. Thus, MRS has been 
used to study neuronal loss, using NAA as a marker28-31. Loss of 
NAA may not always correlate with the final destruction of 
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Fig. 1 PCR-I with 18F-labeled water in a 'Derenzo-phantom'. PCR-I is a 
high-resolution brain imaging device; the phantom is a solid plastic disk 
with six sectors of holes each of a different radius (r) and separations (s). 
There is uniform distribution of radioactivity in all the sectors, with clearly 
separated images even for holes 2.0 mm in diameter with 10-mm separa- 
tion. Spectra next to each sector describe measured count distribution in a 
single hole in each sector corresponding a volume of 3.14 x (r)2 x 5 mm3 

(the thickness of the slice is 5 mm). Scale bar represents 10 cm, with each 
division being 2 cm. 

neurons, but to some degree may reflect their health3233. In ad- 
dition to NAA, substances such as lactate, glutamate, creatine, 
choline and myo-inositol provide a view of the progression of 
neurodegeneration; for example, in gliosis, glial cells have a 
concentration of cholines (trimethylamines) twice that of neu- 
rons27. Elevated choline concentrations are also found in con- 
ditions involving the proliferation of pathological forms of 
glial cells such as gliomas7'8. The main limitation in using MRS 
is its relative insensitivity compared to PET, because of the low 
signal obtained per molecule. NAA, the most prominent mole- 
cule in a brain proton spectrum, has an approximate concen- 
tration of 8-10 mM in the brain. Even at this concentration, 
MRS yields a low signal-to-noise ratio, which leads to a rela- 
tively low spatial resolution. Recent developments in PET in- 
strument design have greatly improved the performance of 
PET34,35. Theoretically, the resolution of PET is limited by three 
factors: positron range, small angle deviation, and the sam- 
pling achieved by the detectors. For these experiments, 
positron emission tomography studies were done using a PET 
scanning system (PCR-I) equipped with one ring of 360 BGO 
(bismuth germanate) detectors and a computer controlled 
imaging table36. Here we have studied the long-term physiolog- 
ical changes after MPTP-induced neurotoxicity using PET and 
MRS techniques, in a primate model of PD. 
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Functional PET studies 
Using a specially adapted PET scanning system (Fig. 1), we inves- 
tigated chronic neurodegenerative processes over 3 years in a 
Parkinson disease model in five cynomolgus monkeys (Macaca 
fascicularis). We used carbon-11-labeled 2ß-carbomethoxy-3ß-(4- 
fluorophenyl) tropane ("C-CFT, or WIN 35,428) as a tracer for vi- 
sualizing dopamine re-uptake sites located on presynaptic 
dopamine terminals in experimental animals. We compared regional 
accumulation of "C-CFT in the striatum at two different coronal 
brain levels (A20 and A15 from the stereotaxic zero) with its accu- 
mulation in the cerebellum in the weeks before, during and after ad- 
ministration of MPTP; this treatment produces a parkinsonian brain 
degeneration of the dopamine system (Fig. 2). The striatal-to-cere- 
bellar ratio of the "C-CFT accumulation was 4.5 in the pre-MPTP 
study and declined with the onset of MPTP administration. 
Spontaneous locomotor activity decreases in parallel with the 
decline of the "C-CFT uptake23; however, overt Parkinsonian 
signs appear only after locomotor activity and the "C-CFT up- 
take rate decline to about 30% of their pre-MPTP values23. Here 
the putaminal binding potential of "C-CFT continues to decline 
5-8 months after termination of MPTP administration (Fig. 2) 
and remains at this level for 2 years after MPTP treatment (Fig. 
3). Similarly, the "C-CFT levels in caudate continued to decline 
from 55% when MPTP treatment was stopped (Fig. 2) to 21 ± 9% 
5-8 months after its termination, and remained at this level for 2 
years (Fig. 3). Thus, functional degeneration of DA terminals 
continues for approximately 5-8 months after MPTP treatment 
ends and then does not spontaneously recover. During MPTP ad- 
ministration, "C-CFT accumulation decreased at a faster rate in 
putamen than in caudate (as seen in PD)(Figs. 2 and 3), indicat- 
ing that DA terminals are more sensitive to MPTP in the puta- 
men than in the caudate. 

MRS studies during neural degeneration 
We used :H water-suppressed MRS to measure biochemical 
changes in the striatum during MPTP-induced neurodegenera- 

Fig. 2 A long-term follow-up study of comparative distribution of "C-CFT 
in a primate Parkinson disease model. Two representative coronal brain lev- 
els (A20 and Al 5) are presented before (0), during (4,16,18) and 6 months 
after (24) MPTP treatment. Images are normalized to cerebellar activity and 
represent distribution of specific to nonspecific binding of "C-CFT in the 
brain 60-62 min after administration of the labeled ligand. 
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Fig. 3 PET studies of "C-CFT bind- 
ing (a) and MRS studies of striatal bio- 
chemistry (fc) before, during and after 
MPTP-induced neurotoxicity. There 
were irreversible changes of "C-CFT 
binding, choline and N-acetylaspar- 
tate concentration, as well as a 23-fold 
increase in peaks corresponding to 
lactate and macromolecule concentra- 
tion that was reversible. Normalized 
time scale (horizontal axis) is obtained 
based on the response to MPTP-in- 
duced neurotoxicity in individual 
monkeys (as in patients, susceptibility 
varies). When the monkey showed 
overt parkinsonian symptoms, MPTP 
was terminated. The time of the MPTP 
treatment was normalized to 100, and 
the follow-up period was also normal- 
ized for each animal according this scale. The control value of the bind- 
ing potential (k3/k4) was normalized to 100 and all the follow-up values 
were also normalized using this scale. The average follow-up time post 
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MPTP was 2 years and the average value of the binding potential in con- 
trol studies was 4.6-5.6 in putamen and 4.8 -6.6 in caudate region of 
the striatum. 

tive processes. Complementary studies of DA re-uptake sites by 
PET and neurochemical changes by MRS are shown before 
MPTP treatment and 2 months after the last MPTP administra- 
tion (Fig. 4). MPTP induced elevation of lactate/macromole- 
cules and choline peaks (Figs. 3 and 4). Even as much as 10 
months after termination of MPTP-induced neurotoxicity, the 
elevation in lactate/macromolecular peak was 23-fold + 7-fold 
(Fig. 3). The choline/creatine (Cho/Cr) ratio in control mon- 
keys was 0.83 ± 0.06 (Fig. 4), whereas it was 1.30 + 0.15 in the 
8-10 months after MPTP-induced neurotoxicity (Figs. 3 and 4). 
The NAA/Cr ratio in the control monkeys had very high inter- 
animal reproducibility (2.38 + 0.11). This ratio decreased 
slightly but significantly in MPTP-treated monkeys to 1.93 ± 
0.21 (P < 0.01) in the striatum 8-10 months after termination 
of MPTP treatment. This finding may reflect that MPTP is 
mostly neurotoxic for dopaminergic neurons in the substantia 
nigra, with only transsynaptic anterograde degeneration of the 
striatum3738. Our data also show that the changes in NAA and 
Cho persisted after MPTP-induced neurotoxicity (Fig. 3). Two 
years after MPTP treatment stopped, the increase of choline in 
treated monkeys was 38 ± 4 % of the control value, and the cor- 

responding decrease of NAA was 26 ± 4 % (Fig. 3). In contrast, 
the changes in lactate /macromolecular signal are reversible; by 
2 years after final MPTP administration, this value had re- 
turned to control (background) levels. At approximately the 
time the striatal level of DA reuptake sites ("C-CFT) reached a 
minimum in PET studies, the lactate peak seen with MRS 
reached a maximum. 

Discussion 

These experiments demonstrate, through the combined use of 
PET and MRS methods, a dynamic and specific neurochemical 
pattern of long-term neurodegenerative changes in the pri- 
mate striatum after DA loss similar to that of PD. The physio- 
logical changes characterized by this combined PET/MRS 
approach provide data for a comprehensive in vivo analysis of 
the ongoing biological processes occurring after selective 
neural degeneration. 

In animal models22,23 and in humans39, ' 'C-CFT is a useful lig- 
and to monitor DA terminal degeneration by PET scanning23. 
CFT was the first ligand to demonstrate a loss of DA fiber den- 
sity equivalent to the loss of DA in human post-mortem 
Parkinson-diseased brains40. "C-CFT binding also correlates 
with motor signs in the MPTP primate model of Parkinson dis- 
ease22; these observations have been verified in a larger series of 
primates23 and are analogous with findings in early Parkinson 
disease in humans40. 

Here we studied "C-CFT levels and biochemical parameters 
in the striatum of each monkey for about 2 years after the mon- 
key developed overt parkinsonian Signs (at which time MPTP 
treatment was terminated). These data show persistent long- 
term physiological changes in striatal CFT binding and MRS- 
identified levels of choline and NAA. The changes in NAA and 

Fig. 4 PET and MRS studies of a monkey before any MPTP and 2 
months after the last MPTP treatment. PET images (left) demonstrate 
that specific/nonspecific binding ratio of "C-CFT was considerably de- 
creased after MPTP treatment (color coded by Max-Min bar at bottom). 
MRS (right) demonstrates a decreased NAA/Cr ratio, an elevated Cho/Cr 
ratio and an elevated lactate and macromolecule peak after MPTP treat- 
ment (TR/TE 2000/272 ms; PRESS). 
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choline levels were moderate and are consistent with an inter- 
pretation that MPTP-induced neuronal loss is mostly in the 
substantia nigra and that transsynaptic anterograde degenera- 
tion is in striatum37,41. MRS studies in patients with idiopathic 
Parkinson disease show few changes in striatal NAA or choline, 
but decreases of NAA and increase of choline are seen in some 
forms of parkinsonism42'43. 

We noted large changes in the MR spectral region between 1 
ppm and 1.5 ppm (corresponding to lactate and macromole- 
cules). Before the oxidative stress induced by MPTP, the inten- 
sity of this spectral band in the striatum was at background 
level, but with MPTP treatment, several large selective increases 
in striatal signal intensity were observed. First, there was a large 
increase of intensity at 1.33 ppm consistent with elevations in 
lactate (Fig. 3). After termination of MPTP treatment, there were 
even larger increases in signals at both 1.0 and 1.3-1.5 ppm. 
These later changes may reflect ongoing oxidative stress caused 
by physiological adaptive changes in function of the striatum. 
The presence of large amounts of mobile lipids acutely after 
MPTP treatment provides evidence for neuronal membrane 
breakdown possibly caused by lipid peroxidation or cell death 
mediated through cellular respiratory-chain inhibition10,38. 
However, the molecular species involved have not yet been 
specifically identified10-38. Detailed histological analysis of the 
striatum, however, indicates very little macrophage infiltration 
or gliosis in the MPTP-treated striatum in this progressive 
MPTP-induced degeneration2022. Nonetheless, minor local stri- 
atal neuronal loss around large blood vessels and arterioles has 
been observed (O.I. and N.K. Kowall, unpublished observation), 
probably a consequence of direct MPTP-induced neuronal de- 
generation and mild gliosis from high toxin levels next to blood 
vessels (from intravenous administration of MPTP). The 
changes in the lactate and macromolecular peaks are reversible, 
however, and return to baseline 2 years after termination of 
MPTP administration. 

These dynamic neurochemical shifts that occur several years 
after the neurotoxic event may relate to important physiologi- 
cal and pathological processes. For example, the signs of PD are 
not discernable in a patient until there is a 60-80% decrease in 
striatal dopamine levels. This in itself indicates fundamental 
adaptive physiological processes that maintain striatal func- 
tion despite considerable degeneration of one transmitter sys- 
tem. Beyond this critical threshold, PD unfolds in a movement 
disorder that can, at least initially, be reversed by DA drug re- 
placement therapy. Because the results of the MPTP treatment 
used here closely resemble the DA degeneration seen in PD, the 
movement disorder in this primate model also develops at the 
critical threshold of DA loss22,23. The dynamic and persistent 
physiological changes seen here using PET and MRS may there- 
fore reflect similar adaptive striatal responses to those occur- 
ring in PD. Furthermore, the oxidative stress seen years after 
the neurotoxic events leading to DA loss indicate that the stri- 
atal neuronal circuitry may be compromised and at risk for 
subsequent structural and pathological processes. Future inves- 
tigations should determine if such physiological stress of the 
caudate-putamen also occurs after other types of neurodegen- 
erative events, or after long-term pharmacologically induced 
changes of the DA system44. 

These data indicate that the structural and neurochemical 
changes after a DA neurotoxic event are dynamic and complex, 
and continue to develop long after the neurodegenerative 
stimulus has stopped and PD signs develop. The characteriza- 

tion of these physiological changes may provide insights and a 
time frame for new therapeutic interventions in PD. 

Methods 
Primate model. The behavioral model of PD in cynomolgus monkeys 
(Macaca fascicularis) was produced by the chronic administration (0.6 
mg/kg intravenously, every 2 weeks until behavioral stability) of the mito- 
chondrial complex 1 inhibitor 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri- 
dine23 (MPTP). Spontaneous locomotor activity was quantified by 
continuous monitoring with four pairs of infrared motion detectors. 
Additional video recording and assessment was done monthly. 
Hypokinesia (decreased frequency of spontaneous movement), bradykine- 
sia (slowness of movement) and tremor were rated by two independent 
observers to generate a clinical score (0-12), as reported23. Animals used in 
this study were maintained according to the guidelines of the Committee 
on Animals of the Harvard Medical School and Massachusetts General 
Hospital and those of the Guide for Care and Use of Laboratory Animals of 
the Institute of Laboratory Animal Resources, National Research Council, 
Department of Health, Education and Welfare. 

PET techniques. The resolution of PCR-I for a point source at the center is 
4.5 mm, and the sensitivity is 46,000 counts per s for a source 20 cm in di- 
ameter with a concentration of 1 (iCi/ml. The overall detection efficiency 

of photons is 64% of the theoretical maximum for a plane thickness cor- 
responding to the 2-cm-high detectors. A plane thickness of 5 mm (as 
used in this study) is obtained by limiting the effective height of detectors 

with cylindrical collimators, and it corresponds to a volume resolution of 
0.08 ml. The resolving time of the PCR-I is 6 ns (FWHM). 

We used a 'Derenzo-phantom' initially, with 1BF-labeled water as a ra- 
dioactive tracer (Fig. 1). The phantom is a solid plastic disk with six sectors 
of holes of different diameters and separations. All the holes have the 
same length (25 mm). The smallest holes have a diameter of 2.0 mm and 
the separation between the midpoints of the holes is 10 mm. The largest 
holes have a diameter of 6.25 mm and the separation between the mid- 
points of these holes is 25 mm. Using the PCR-I, it is possible to image ob- 
jects 2 mm in size separated by 1 cm (Fig. 1). 

The synthesis of "C-CFT involves direct "C-methyl iodide methylation of 
2ß-carbomethoxy-3ß-(-4-fluorophenyl)tropane (WIN 35,428; prepared by 
Organix, Wobum, Massachusetts) as published45. For PET imaging, mon- 
keys were anaesthetized with 30mg/kg ketamine and 3mg/kg xylazine 
(initial dose, intramuscularly), and anesthesia was maintained with half this 
dose as needed. The femoral artery and vein were catheterized for collec- 
tion of blood samples and injection of labeled ligand. The monkey was 
placed in the imaging position and the head was adjusted in a stereotaxic 
headholder with the earbar as a reference plane. Interior orbital supports 
ensure that images are acquired in pseudocoronal plane perpendicular to 
the orbito-meatal line. This allows superposition of data from MRI and 
MRS studies. After administration of labeled ligand (5 mCi; specific activity 
600-1000 mCi/u.mol) into the femoral vein, imaging data were collected 
'stepwise' on seven coronal levels: A30 (that is, 30 mm anterior from the 
earbar), A25, A20, AI 5, A10, P5 (that is, 5 mm posterior from the earbar) 
and P10. The initial acquisition time per image was 15 s; it was subse- 
quently increased to 60 s with the total imaging time being 90 min. 
Eighteen arterial blood samples of 0.1 ml each were drawn to monitor the 
decrease of radioactivity, starting a frequency of 15 s and ending with a 
frequency 15 min. In addition, six arterial samples were collected for HPLC 
analyses of metabolites of labeled ligand. Calibration of the positron tomo- 
graph was done for each study session, using the cylindrical plastic phan- 
tom (diam. 6 cm) and 18F-labeled water. Cross-calibration with a gamma 
counter (Cobra Auto-gamma; Packard, Downers Grove, Illinois) was also 
done using 18F-labeled water. Plasma data were corrected for counting effi- 
ciency, calibration factor and measured metabolites, and percent activity 
of the injected dose and ligand concentration were calculated. Imaging 
data were corrected for uniformity, sensitivity, attenuation, decay and col- 
lection time. PET images were reconstructed using Hanning weighted con- 
volution backprojection46. Regions of interest (including left and right 
caudate and putamen, frontal cortex and cerebellum) were outlined from 
anatomical representations on the screen, and activity per unit volume, 
percent activity of the injected dose and ligand concentration were calcu- 
lated. Data were analyzed using a three-compartmental model3' and 
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SAAM program47. Plasma data were corrected for metabolites using an ex- 
perimental two exponential correction function; f(t) = 0.709 x exp(-0.108 
x t) + 0.286 x exp(-0.014 x t). Binding potential was calculated as a ratio 
of transportation coefficients (k3/k4) into (k3) and from (k,) the area of in- 
terest (caudate or putamen). 

MRS techniques. Monkeys were scanned on a CE 1.5T Sigma scanner 
(General Electric, Milwaukee, Wisconsin) using a saddle coil 15 cm in di- 
ameter. Monkeys were anesthesized with a dose of a mixture of 30 mg/kg 
ketamine and 3mg/kg xylazine. In the neurochemical analysis30, single 
voxel spectra were recorded from striatum in the monkeys using a stan- 
dard point resolved spectroscopy (PRESS) sequence (TR/TE = 2000/272 
ms and 2000/136 ms, 2-kHz sweep width) with presaturation of the 
water using three chemical shift selective suppression (CHESS) pulses. The 
voxels were prescribed from a coronal plane and were optimized to cover 
both caudate and putamen. The voxel sizes ranged from a minimum of 8 
x 8 x 9 mm3 (0.6 cm3) to a maximum of 1 x 1 x 1 cm3. Data were analyzed 
using the NMR1 (New Methods Research, Syracuse New York) software 
package. After apodization with an exponential multiplication corre- 
sponding to a 1-2-Hz line-broadening and Fourier transformation, the 
major metabolites30 were integrated in the frequency domain using curve 
fitting and assuming mixed Lorenzian-Gaussian lineshapes. Metabolite in- 
tensities were normalized relative to the phosphocreatine/creatine peak 
at 3.03 ppm as the denominator. 
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Summary - We conducted PET imaging studies of modulation of dopamine transporter function and MRS studies of neurochemicals in 
idiopathic primate Parkinson's disease (PD) model induced by long-term, low-dose administration of MPTP. MR spectra showed striking 
similarities of the control spectrum of the primate and human striatum as well as MPTP-treated primate (six months after cessation of 
MPTP), and Parkinson's disease patient striatum (68 year old male; Hoehn-Yahr scale II; 510 mg/d L-DOPA). The choline/creatine ratio 
was similar in the MPTP model and human parkinsonism, suggesting a possible glial abnormality. The progressive degeneration of dopamine 
re-uptake sites observed in our PD model can be expressed by a time dependent exponential equation N(t) = N0 exp (-(0.072 ± 0.016) t), 
where N0 represents intact entities (dopamine re-uptake sites before MPTP) and 0.072 per month is the rate of degeneration. When the signs 
of PD appear, N(t) is about 0.3-0.4 times N0. Interestingly, this biological degenerative phenomena has similar progression to that observed 
in cell survival theory. According to this theory and calculated degeneration rate, predictive models can be produced for regeneration and 
protective treatments. © 1999 Elsevier, Paris 

dopamine transporters / L-DOPA / MPTP / MRS / Parkinson's disease / PET 

Parkinson's disease (PD) is one of the most common 
neurologic disorders. It is estimated that about 1 mil- 
lion Americans are affected by Parkinson's disease and 
about 40,000 new patients are diagnosed every year. 
Hypotheses of the etiology of PD are focused on possi- 
ble genetic links (such as a-synuclein) and on the poten- 
tial contribution of toxins (exogeneous and/or endoge- 
nous) [78, 79] and their potential interaction with 
genetic components [15]. At the cellular level PD is 
characterized by severe depletion of DA neurons and 
associated loss of synapses in the basal ganglia. 

PD is diagnosed clinically based on the cardinal 
signs: tremor, rigidity, bradykinesia and postural insta- 
bility [66]. Improved understanding of the pathophysi- 
ologic mechanism underlying parkinsonian signs and 
symptoms [70], as well as refinement of methods and 
techniques in neuroradiology, neurosurgery and neuro- 
physiology, have stimulated the recent interest in devel- 
oping therapeutic techniques. Investigations of MPTP 
(l-methyl-4-phenyl-1,2,5,6-tetrahydropyridine)- 
induced parkinsonism in non-human primates have led 
to the hypothesis that dopamine deficiency in striatum 
leads to unbalanced activity from subthalamic nucleus 
into globus pallidus, resulting excessive inhibitory out- 

flow (increased and synchronized spontaneous firing 
rate) from the internal segment of the globus pallidus 
[25]. This suppresses the motor thalamus which reduces 
activation of the cerebral cortex motor system, result- 
ing in deficiency of movement [6,25]. To interrupt this 
basal ganglia-motor system circuitry; three different 
therapeutic modalities are used, namely pharmacolog- 
ical therapy [52, 72, 80], fetal cell transplantation [28, 
29,51,59], and surgical procedures such as pallidotomy 
[30, 36], thalamotomy [46] and chronic thalamic high 
frequency stimulation [4]. 

A recent extensive PD twin study indicates that phys- 
iological and toxic factors play roles in causing typical 
PD as humans age [79]. This progressive decline of 
dopamine (DA) terminals seen in idiopathic PD can be 
closely modeled in the non-human primate Macacafas- 
cicularis by a low-dose exposure of the mitochondrial 
toxin, MPTP [8, 42, 81]. 

Developing radiopharmaceuticals for detection of 
dopamine terminals has been a major challenge for 
pharmacological research. Since autoradiographic 
studies of using cocaine analogs to label dopamine 
transporters were introduced [49], tropane derivatives 
have been widely used in PET imaging studies of 
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Parkinson's disease and drug abuse [35, 40, 52]. The 
latest developments, however, involve specific and sen- 
sitive cocaine analogs labeled with technetium-99m or 
iodine-123, used in single photon emission tomography 
studies of dopaminergic system [7,22, 38, 53, 64]. 

The ability to observe both physiology and function in 
small areas within the brain is now possible with high res- 
olution PET and MR imaging techniques [11,16,47].The 
potential use of positron emission tomography (PET) as 
a research tool in movement disorders has been demon- 
strated in studies of brain dopamine function [74] and glu- 
cose metabolism associated with movement disorders [1, 
43,71]. Recently, high resolution PET imaging has been 
widely used in studies with animal models of Parkinson's 
disease [8-10,18,19,42,48,81]. In addition, advances in 
receptor studies [10, 32, 42], and magnetic resonance 
spectroscopy of neurodegeneration [8, 24, 39, 44, 47], 
provide specific functional neurochemical information. 

Our earlier work indicated; (1) that a stable Parkinson- 
like disease appears after chronic administration of 
a neurotoxin, MPTP; (2) that progressive dopamin- 
ergic fiber loss can be detected by positron emis- 
sion tomography (PET) using carbon-11 labeled 
2ß-carbomethoxy-3ß-(4-fluorophenyl) tropane 
(UC-WTN 35,428 or "C-CFT) to label dopamine re- 
uptake sites [42, 81]; and, (3) that progressive physio- 
logical changes of neurochemicals occur as observed 
with MRS and PET [8]. In the present article, we com- 
pare imaging characteristics of UC-CFT with those 
of 18F-L-6-fluorodopa, and show that by using nC-CFT 
the progressive degeneration of dopamine terminals can 
be mathematically modeled to determine the rate of 
degeneration and predict the time of onset of PD signs. 

Table I. Striatal neurochemical changes in primates 0.5-2 years 
after cessation of MPTP treatment. 

Metabolite 
Ratio 

Controls 
(n = 10) 

MPTP 
(n = 6j 

NAA/Cr (range) 

Cho/Cr (range) 

2.38 ±0.11 
(2.3-2.5) 
0.83 + 0.06 
(0.8-0.9) 

2.09 + 0.29* 
(1.7-2.5) 
1.20 + 0.15*** 
(1.0-1.4) 

Unpaired Student's t test values for difference from control: 
*P<0.05; **P<0.01; ***P<0.001. 

obtained by repetitive administration of MPTP dissolved in 
saline and immediately administered intravenously to pri- 
mates (0.6 mg/kg i.v., every two weeks until behavioral sta- 
bility) under light anesthesia (ketamine, 5 mg/kg i.m.), as 
previously described [81]. 

In this chronic model, behavioral signs developed grad- 
ually over 9-14 months, progressing from bradykinesia to 
akinesia in all limbs. Tremor also occurred as the last PD 
sign. These signs did not spontaneously recove, in contrast 
to acutely induced MPTP-PD models [20, 31, 54]. 

PET imaging studies of dopamine transporters 

Instrumentation 
Positron emission tomography studies were carried out 
with PET scanning system, PCR-I [11], as earlier described 
[8]. 

Labeling of radiopharmaceuticals 
Radiolabeling of "C-CFT was published earlier [10] and 
L-6-18F-fluorodopa was prepared according to the fluoro- 
demercuration method [62]. 

MATERIALS AND METHODS 

Study design 

Longitudinal PET and MRS imaging studies were carried 
out in six MPTP-treated primates (Macaca fascicularis) to 
follow the progression of the MPTP-induced degeneration. 
These primates served as their own controls in studies prior 
MPTP. Control studies with MRS included four additional 
primates (table I). Comparison of MRS primate data was 
done with one Parkinson's disease patient (68 year old 
male; Hoehn-Yarn scale II, 510 mg/d L-DOPA) and an aged 
matched normal volunteer. 

MPTP-lesion in primates 

A slow neurotoxic lesion of dopaminergic cells located in 
the substantia nigra and in the ventral tegmental area was 

Experimental procedures 
For PET imaging, animals were anaesthetized with 
ketamine/xylazine (30/3 mg/kg i.m.) initial dose and anes- 
thesia was maintained with half a dose hourly injections as 
needed. Catheterization of the femoral artery and vein was 
used for collection of blood samples and injection of labeled 
ligand. The animal was placed in the imaging position, and 
the head was adjusted into a stereotactic headholder with 
the earbar at the origin. Interior orbital supports ensure that 
images were acquired in pseudocoronal plane perpendicu- 
lar to the orbito-meatal line. This allows superposition of 
data from MRI and MRS studies. After the injection of 
labeled ligand, "C-CFT or 18F-L-6-fluorodopa (5mCi, spe- 
cific activity 600-1,000 mCi/umol) into the femoral vein, 
imaging data were collected stepwise on seven levels (A30 
(30 mm anterior from the origin), A25, A20, A15, A10, P5 
(5 mm posterior from the origin) and P10) initially using 
15 s frames. The frame time was subsequently increased to 
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60 s, the total imaging time being 90 min for "C-CFT 
and 120 min for 18F-L-6-fluorodopa. While imaging with 
"C-CFT, 18 arterial blood samples of 0.1 mL were col- 
lected at different time points starting from 10 s frequency 
and ending with 15 min frequency to monitor the decrease 
in radioactivity. In addition three arterial blood samples 
were collected for HPLC analyses of metabolites of labeled 
ligand. 

Calibration of the positron tomograph was performed in 
each study session using a cylindrical plastic phantom 
(diameter 6 cm) and 18F-solution. Cross calibration with a 
gamma counter (Packard Cobra Auto-gamma, Downers 
Grove, IL, USA) was carried out using the same solution. 
Imaging data were corrected for uniformity, sensitivity, 
attenuation, decay and collection time. PET images were 
reconstructed using Hanning weighted convolution back- 
projection [13]. Regions of interest including left and right 
caudate and putamen, frontal, parietal and temporal cortex, 
thalamus and cerebellum were drawn on each level and 
activity per unit volume, percent activity of injected dose, 
and ligand concentration were calculated. Plasma data were 
corrected for counting efficiency, calibration factor and 
measured metabolites of "C-CFT and percent activity of 
injected dose and ligand concentration were calculated. 
Plasma data was used as an input function in the kinetic 
modeling. 

Receptor studies with nC-labeled CFT 

fixed ratio (k,/k2) was used as a constraint to reach param- 
eter optimization. Regional binding parameters k3/k4 were 
calculated for each study. 

Comparison of imaging characteristics of "C-CFT 
and 18F-L-6-fluorodopa 

Comparison of imaging characteristics of "C-CFT and 
18F-L-6-fluorodopa was based on obtained contrast in stria- 
turn compared to cerebellum. The difference of the striatal 
and cerebral accumulation of radioactivity was fitted into 
gamma variate function and the maximum value was 
divided by the value of the cerebral activity at that time 
point. 

Modeling of progressive degeneration 

To analyze MPTP-induced progressive degeneration, val- 
ues of striatal binding potentials of "C-CFT at different 
time points during the MPTP-administrations (time = 0 
when MPTP-administration was started) were fitted into an 
exponential function; N(t) = N0(t = 0) exp(-k t). N0 denotes 
binding potential in the intact dopamine terminals or arbi- 
trary estimate of the intact dopamine terminals, N(t) is the 
corresponding value after degeneration of time (t) and k is 
a rate of degeneration. 

MRS studies of neurochemicals 

The kinetic behavior of "C-CFT was studied with a three 
compartmental model approach [77]. In the three compart- 
mental model, the first compartment is the plasma pool, the 
second is the exchangeable tracer pool including free and 
nonspecifically bound ligand in the brain, and the third 
compartment is a trapped tracer pool including bound lig- 
and in the brain. The exchangeable tracer pool contains 
ligand but no receptors and the third compartment includes 
all the receptors, partly or totally occupied by ligands. The 
kinetic parameters k3 and k4 describe the binding to and dis- 
sociation from receptors. 

The transfer coefficients k,-k4 were mathematically 
resolved using the S AAMII program [26]. For stabilization 
of the k values the fitting procedure was performed using 
three steps. Since cerebellum does not have specific receptor 
binding or it is negligible, fitting was done in the cerebel- 
lum data letting all the k-values float. Briefly, with estimates 
for the initial conditions for the k-values, the differential 
equations were integrated using an adaptable fourth order 
Runge-Kutta method with suitable accuracy (tolerance l"-7). 
Iterations continued until sufficient convergence was 
achieved for the system parameters (k^k,,). The ratio k,/k2 

was calculated. In further iterations of the striatal data the 

For these studies, we utilized single voxel spectroscopy of 
the basal ganglia. We chose voxels centered in the striatum 
for both monkeys and PD patients. Voxels were between 
0.5-1 cm3 in the monkey brain and between 3-5 cm3 in 
the human brain. Water suppression was performed using 
CHESS pulses and localization by a standard PRESS-type 
sequence with TR/TE of either 2000/272 or 2000/136 ms. 
Spectra were processed using the NMR1 program (NMRI, 
Syracuse, NY), by curve fitting the entire spectrum and inte- 
grating the areas of the major metabolites. Integrals were 
then normalized to the creatine peak at 3.03 ppm (Cr) as a 
standard. 

Metabolite quantification 

We found NAA/Cr ratios to be reliable quantitative indica- 
tors of neurodegeneration. This reliability was indicated by 
the large differences noted between the MPTP-lesioned 
animals. In the case of single voxel spectroscopy we used 
a fully relaxed non-water suppressed spectrum from the 
voxel. This provides a constant internal reference for a 
metabolite/water ratio even if, due to metabolite Tl and T2 
errors, absolute concentrations remain elusive. The stan- 
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dard deviations in this technique were very small, and 
allowed to make direct inter-animal comparisons. 

Characterization of the elevated lipid/lactate peaks were 
performed using multiple TE values to characterize the cou- 
pling constants and double quantum filtration to estimate 
how much of the intensity is due to lactate. Due to the rel- 
atively shorter Tl values of lipids, we used inversion recov- 
ery PRESS spectra with variable TI values to characterize 
the lipid Tls in order to estimate the concentrations. In 
addition, we have implemented a STEAM sequence with 
the capability getting TE's down to 6 ms. This enables quan- 
titative measurements of the lipid and macromolecular 
components when combined with the inversion recovery 
experiments. 

RESULTS 

Figure 1 shows nC-CFT and 18F-L-6-fluorodopa distri- 
bution in the same control primate. Sixty minutes before 
the 18F-L-6-fluorodopa injection the primate was pre- 
treated with carbidopa (5 mg/kg) to reduce peripheral 
metabolism. These images show the striking specificity 
of UC-CFT to image striatal function. The contrast of 
striatal binding using UC-CFT was 3.25 ± 0.56 and cor- 
respondingly 1.67 ± 0.23 using 18F-L-6-fluorodopa. 
Striatal data were averaged from putamen data of 
levels A20 and A15 from the left and right sides and 
caudate data of levels A25 and A20 from both sides. 
Figure 2 shows relative nC-CFT binding distribution 
before and during MPTP administration in an asymp- 
tomatic and symptomatic stage. Three coronal brain 
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Figure 1. Color coded PET images showing "C-CFT and 
18F-L-6-fluorodopa accumulation in the same control primate 
brain. Sixty minutes before fluorodopa injection the animal was 
pretreated with carbidopa (5 mg/kg) to reduce peripheral dopamine 
metabolism. "C-CFT images are acquired 60-62 min after injec- 
tion and 18F-L-6-fluorodopa images 90-120 min after injection. 
Four images represent the brain levels A25, A20, A15 mm anterior 
and P5 mm posterior from the reference plain. After corrections 
for decay, acquisition time and injected activity the highest pixel 
value of the four "C-CFT images was normalized to 10,000 
and the lowest to 0. All the "C-CFT images were normalized 
according to this scale. Correspondingly, after corrections the four 
,8F-L-6-fluorodopa images were normalized similarly. 
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Figure 2. Color coded PET images showing relative "C-CFT 
binding in a monkey brain 60-62 min after injection. The three 
images represent the levels throughout caudate-putamen (A25, 
A20 A15 mm anterior of the reference plain) before MPTP treat- 
ment, after 3 MPTP injections, when the primate was asymp- 
tomatic and after 9 months of MPTP treatment, when the monkey 
was symptomatic. After corrections for decay, acquisition time and 
injected activity, the average count density was determined in cere- 
bellum study and "C-CFT images of the three coronal brain lev- 
els were divided by this value on the pixel basis individually in 
each study. Finally, the highest pixel value in the nine images was 
normalized to 10,000 and the lowest to 0. All the images were nor- 
malized according to this scale. 

levels (A25, A20 and A15) through the striatum show 
that degeneration in putamen is more severe that in cau- 
date. The progressive degeneration of dopamine re- 
uptake sites observed in our primate PD model can 
be expressed by an exponential equation N(t) = N0 exp 
(-k t), where N0 represents intact entities (dopamine re- 
uptake sites) and k represents the rate of progressive 
degeneration. Figure 3 shows progressive degeneration 
observed in six primates during low-dose MPTP admin- 
istrations. The exponential curve fitted to the calculated 
binding potential values is N(t) = N0 exp (-(0.072 ± 
0.016) t) indicating that the rate of MPTP-induced 
degeneration is 0.072 per month. When signs of PD 
appeared, N(t) was about (0.3-0.4) N0. 

We have also investigated neurochemical changes 
with MRS in the same primates as imaged by PET using 
nC-CFT. Spectra from a control and typical MPTP- 
treated primate striatum (six months after cessation of 
MPTP therapy) is shown in figure 4 with comparison to 
MR spectra of a parkinsonian patient (68 year old male, 
Hoehn-Yahr scale II, 510 mg/d L-DOPA) and an age 
matched control patient. Note the pronounced changes 
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Figure 3. Model for the progressive degeneration and the appear- 
ance of parkinsonism in MPTP treated primates. Control value of 
the binding potential (before MPTP) was normalized individually 
to 100 and all the other values were normalized according this 
scale. (Raw data from [8].) 

compared to the control striatum. Lactate and/or lipid 
peaks are visible in both the patient and the primate, but 
not in the controls. In all the primates studied (n = 6), 
the lactate/lipid peaks had disappeared after an addi- 
tional eight months [8]. These data indicate an acute 
metabolic process which resolves after a period of time, 
and is consistent with the time course for macrophage 
infiltration. Unfortunately we were unable to collect 
enough data to completely assay the time course of 
changes in all the metabolites over time. Future studies 
will entail collection of more data to determine the com- 
plete spectroscopic time profile of evolution of the neu- 
rochemical changes. 

In the MPTP model there is a significant decrease in 
NAA, which is larger than that seen in our PD patients 
(NAA/Cr = 2.09, n = 6 vs. 2.33 in PD patients, n = 23, 
B. Jenkins, personal communication). This is signifi- 
cant since our control human population had identical 
NAA/Cr levels to the primate controls (2.33 ± 0.46 in 
humans; n = 20 vs. 2.38 ± 0.11 in primates, n = 10, 
Jenkins, personal communication). Notably, in the 
MPTP monkeys there was a large increase in the Cho/Cr 
ratio, very similar to what is seen in our PD patients 
(Cho/Cr = 1.2). Choline may be reflective of gliosis as 
the choline concentration in glial cells is twice that in 
neurons or of macrophage activity. A quantitative sum- 
mary of our primate results is shown in the table I. 

Cho   cr 

PD Patient 

NAA 

MPTP-Treated Monkey 

NAA 

Macromolecules/ 
Lactate 

Macromolecules/ 
Lactate 

4.00 3.00 2.00 1.00 ppm 4.00 3.00 2.00 1.00 ppm 

Figure 4. Striatal spectra from: Left) A PD patient (male; 68 years old; Hoehn-Yahr scale II; 510 mg/d L-DOPA), and an age-matched 
control. Right) An MPTP-treated monkey 6 months after cessation of MPTP-treatment and a control monkey. Major neurochemicals 
observed are indicated. Note the striking similarity of the control spectrum of the primate and human as well MPTP-treated primate and 
Parkinson's disease patient (TR/TE 2000/272ms; PRESS). 
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DISCUSSION 

Realistic primate models that mimic the progressive 
changes of PD are of critical importance for developing 
neural therapeutic techniques. The optimal procedure 
for therapy-induced behavioral recovery observed in 
many clinical and experimental studies is still unclear. 

Primate models of parkinsonism were developed 
using MPTP administered according to different proto- 
cols [12, 56]. Stereotaxic application of MPTP (or its 
active metabolite MPP+) in substantia nigra or in the 
striatum, as well as intra-carotid injections or repeated 
intravenous administration during 5-10 days [12, 45, 
56], generally induces a marked dopamine depletion 
resulting in a severe akineto-rigid parkinsonian syn- 
drome (often requiring drug therapy) within weeks 
following treatment. Such studies demonstrated 
that MPTP-induced behavioral, neurochemical and 
anatomical changes are analogous but not identical to 
alterations observed in parkinsonian patients [12, 21]. 
Acute protocols (toxicity induced over one to five days) 
of MPTP differ from idiopathic (PD) in several aspects: 
(1) pathologic changes in idiopathic PD extend beyond 
the substantia nigra [37]; whereas, the substantia nigra, 
and to a lesser extent the ventral tegmental area, are the 
regions primarily lesioned by MPTP toxicity; (2) acute 
MPTP-administration to non-human primates does not 
produce an uneven pattern of striatal dopamine loss 
described in idiopathic PD, with relative sparing of 
dopamine levels in the caudate nucleus compared to the 
putamen [21]; (3) acute MPTP toxicity in non-human 
primates also creates motor symptoms that may recover 
with time [20,54]; (4) an acute administration protocol 
does not reproduce the chronic and slow degeneration 
of dopamine neurons that occurs in idiopathic PD. 
Recently, a less acute primate model of various stages 
of PD has been obtained by unilateral intra carotid infu- 
sion [48] combined with sequential systemic doses of 
MPTP [ 19]. In addition, a chronic model of PD has been 
introduced by using daily low dose systemic injections 
ofMPTPfor22days[5]. 

Following these principles, our studies involving 
chronic low-dose administration of MPTP [8], have 
clearly demonstrated that by repeated administration of 
the neurotoxin over a long period of time, it is possible 
to increase the selectivity of the neurotoxin for specific 
subpopulations of dopamine neurons, more accurately 
reproducing the pattern of neuropathological and neu- 
rochemical alterations observed in idiopathic PD. 

Recent advances of in vivo receptor studies have 
resulted in the development of new receptor specific lig- 
ands [2, 23, 32, 33, 63] combined with advances in 

instrumentation for PET [3, 11, 16]. High resolution 
positron imaging yields accurate data over small 
regions inside the brain [9] that, combined with model- 
ing of the ligand-receptor interaction, can provide valu- 
able quantitative information about receptor behavior in 
different areas of the living brain. 

Modeling of neuroreceptor kinetics has also been an 
active research area. Several methods have been pro- 
posed for estimating the binding parameters (Bmax, max- 
imum available receptor binding sites; KD, dissociation 
constant; kon, bimolecular association rate constant; and, 
koff, dissociation rate). The choice of method depends 
on the particular properties of ligand-receptor interac- 
tion. In reversible binding, ligands dissociate from the 
receptor during the imaging period so that the maxi- 
mum binding site density can be calculated from the 
equilibrium distribution [23]. In the case of irreversible 
binding, equilibrium is not achieved during the imag- 
ing period. The dopamine transporter specific ligand 
(nC-CFT) has irreversible binding. 

Two types of kinetic analysis are used to analyze PET 
data. The graphical method [60, 73] has been applied 
by our group to estimate the influx of nC-CFT to 
dopamine terminals [42], and by several groups in esti- 
mating the influx of L-6-18F-fluorodopa [59, 67].The 
other method is based on general non-linear regression 
techniques [14, 61, 69, 77]. 

Research has demonstrated a significant correlation 
between depression of striatal 18F-L-fluorodopa uptake 
of PD patients and their degree of locomotor disability. 
However, while the average putamen 18F-L-dopa uptake 
in PD is reduced to 40% of normal, a 60% loss of 
nigra compacta cells and 80-90% loss of putaminal 
dopamine levels are found post-mortem in PD [34]. 
Therefore, striatal 18F-L-fluorodopa uptake reflects 
metabolic and functional activity of nigro-striatal 
fibers, but may not accurately depict levels of endoge- 
nous striatal dopamine or anatomical depletion of 
dopamine terminals. A specific tracer for selective 
labeling of dopamine fibers would be preferable. 
Among various candidates for labeling dopaminergic 
fibers, specific ligands for dopamine re-uptake sites 
(dopamine transporter) such as nC-nomifensine, 
nC-cocaine or 18F-GBR 13119 (l-((4-((18F)fluo- 
rophenyl) (phenyl)methoxy) ethyl)-4-(3-phenylpropyl) 
piperazine) have been used in PET studies [27,50,57]. 
In such PET studies, specific binding of the ligands to 
dopamine transporters were taken as a measure of 
monoaminergic nerve terminal density. However, using 
these ligands in vitro, binding assay showed only a 40% 
decrease of binding in the caudate nucleus and putamen 
of subjects with PD [65], while other measures for 
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dopaminergic terminals were reduced much more dra- 
matically. Similar results have been obtained in vivo 
using "C-S-nomifensine as a PET tracer [58]. Again, 
the 40% decrease in dopamine re-uptake site density is 
strikingly different from the 90% decrease of dopamine 
levels measured post-mortem in parkinsonian putamen. 

We have studied the imaging characteristics of car- 
bon-11 labeled CFT in normal and MPTP-treated pri- 
mates [10], and it has proved to be a very selective lig- 
and [68] to monitor dopamine terminal degeneration 
having higher specificity than nomifensine or GBR ana- 
logues for the dopamine uptake complex [49]. Several 
observations suggest that CFT is a useful and specific 
marker for dopamine nerve terminal density: "C-CFT 
in vivo binding, as well as 3H-CFT in vitro binding [49] 
in the non-human primate caudate nucleus, is highly 
specific for the dopamine transporter. 3H-CFT binding 
was decreased in PD up to 95% depending on striatal 
region [49], and 3H-CFT depletion in PD paralleled the 
dopamine depletion, with a more severe decrease in 
specific binding in the putamen than in the caudate 
nucleus [49]. 

Our group was the first to demonstrate that "C-CFT 
binding correlated with behavioral symptoms in a pri- 
mate model of Parkinson's disease [42]. This has been 
verified in a larger series of primates [81], and also in 
early Parkinson's disease in humans [32]. After the 
earlier studies, several novel tropane derivatives have 
been introduced for imaging of dopamine transporters, 
mainly labeled with iodine-123 (altropane [64], beta- 
CIT [22], FP-CIT [7], PE21 [38] or technetium-99m 
(trodat) [53]. 

Figure 1 shows that the radiolabeled cocaine analog 
ligands e.g., "C-CFT provide better sensitivity and 
selectivity for imaging of the striatal dopamine system 
than radiolabeled L-dopa. Figure 1 also demonstrates 
the effect of the increased active radiolabeled metabo- 
lites during imaging with 18F-L-6-fluorodopa in blood 
rich areas in the head. "C-CFT used in PET imaging of 
MPTP treated monkeys demonstrate progressive DA 
terminal loss in caudate-putamen before and after 
appearance of PD signs. In addition, the observed 
MPTP-induced degeneration is more progressive in 
putamen than in caudate (figure 2). Our new MRS stud- 
ies illustrate lactate/lipid elevation in the striatum in 
both parkinsonian monkeys (post-MPTP) and in a typ- 
ical case of a Parkinson's disease patient (68 year old 
male, Hoehn-Yahr scale II). This is consistent with pre- 
vious studies [8], showing parallel increases in striatal 
lactate/lipid and continuous DA fiber ("C-CFT) degen- 
eration. In addition, the small decrease in NAA (12%) 
observed in the monkeys may also be reflective of the 

loss of dopamine terminals and striatal cell dendritic 
density. 

Notably in the MPTP monkeys, there was a large 
increase in the Cho/Cr ratio which was almost identical 
to that of PD patients (Cho/Cr = 1.2). This is possibly 
an important physiological observation, since choline 
may reflect gliosis or magrophage activity. The various 
theories for neurodegeneration in PD includes one of 
loss of target-derived trophic support [17,75,76]. Glial 
cells typically provide both growth-factors and homeo- 
static support [75,76,82]. This finding deserves further 
investigation to determine if sub glial changes are a con- 
sequence or a primary cause of dopaminergic axonal 
degeneration in the caudate-putamen of PD. 

Our data provides a basis for a mathematical model 
of degeneration of the DA system in PD. It is known 
that 60-70% degeneration in a dopaminergic system 
precedes the symptoms of PD. In our primate PD 
model, the remaining entities (dopamine re-uptake 
sites) were (0.3-0.4) of the original value when the PD 
signs appeared. Interestingly, this biological degenera- 
tive phenomena has similar progression to that formu- 
lated in cell survival theory in radiobiology concerning 
the effect of radiation in killing cells [41]. According to 
the formula, the number of survived cells (ND) after 
radiation dose (D) is ND = N0 exp (-D/D0), where N0 is 
the number of cells before radiation and D0 is the mean 
lethal dose of radiation. When the radiation dose (D) 
equals to the mean lethal dose (D0), the function will 
get a form of NJN0 = e-1 = 0.37 and the number of sur- 
vived cells is 0.37 N0. Similarly, using the rate of degen- 
eration (0.072 ± 0.016, figure 3), the calculated time to 
get PD signs is 13.9 ± 2.5 months in this MPTP-PD 
model, which is the same as was observed in experi- 
mental studies (figure 3). With this theory and imaging 
studies of the dopaminergic system, a realistic estimate 
can be obtained of degeneration rate and the time when 
the patient will get PD symptoms. 

CONCLUSION 

"C-CFT is a useful ligand for detection of PD-like 
progressive degeneration. Based on the decrease of 
"C-CFT binding, a rate of degeneration can be calcu- 
lated and the time of onset of PD symptoms can be 
determined. 
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Porcine xenografts in Parkinson's disease and Huntington's disease patients: tentative outcomes. (1999) Cell 
Transplant., in press. 
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muscarinic receptor activation. Proc. Natl. Acad. Sei. USA, in press. 

098. Kordower, J.H., Isacson, O. and Emerich, D.F. (1999) Cellular delivery of trophic factors for the treatment of 
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B. REVIEW ARTICLES AND BOOK CHAPTERS 
Rl.       Isacson, O., Brundin, P., Dawbarn, D., Kelly, P.A.T. Gage, F.H., Emson, P.C. and Björklund, A. (1985) Striatal 

grafts in the ibotenic acid lesioned striatum; in "Neural grafting in the mammalian CNS" (eds. A. Björklund 
and U. Stenevi) Elsevier Science Publishers, B.V., p. 539-549 (review). 

R2.       Brundin, P., Isacson, O., Gage, F.H., Stenevi, U. and Björklund, A. (1985) Intracerebral grafts of neuronal cell 
suspensions; in "Neural grafting in the mammalian CNS (eds. A. Björklund and U. Stenevi) Elsevier Science 
Publishers, B.V., p. 51-59 (review). 
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Cholecystokinin content in the basal ganglia in Huntington's disease and expression of cholecystokinin- 
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(Eds. J.J. Vanderhaegen and J.N. Crawley) vol. 448, p. 489-494. 

R4.       Isacson, O., Brundin, P., Gage, F.H. and Björklund, A. (1985) Compensation for lesions induced changes in 
cerebral metabolism and behaviour by striatal neural implants in a rat model of Huntington's disease; in 
"Brain plasticity, learning and memory", Plenum Press (Eds. Will, Schmitt and Dalrymple-Alford) pp. 519- 
535 (review). 

R5.       Gage, F.H., Björklund, A., Isacson, O. and Brundin, A. (1986) Uses of neuronal transplantation in models of 
neurodegenerative diseases; in "Neural transplantation and regeneration" (Eds. G.P. Das and R.B. Wallace) 
Springer-Verlag, p. 103-124 (review). 

R6.       Isacson, O., Björklund, A. and Dunnett, S.B. (1986) Conditions for neuronal survival and growth as assessed by 
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communication in development and regeneration" (Eds. Althauser A. and Seifert W.) Springer Verlag, 
Heidelberg, pp 529-544 (review). 

R7.       Brundin, P., Strecker, R.E., Lindvall, O., Isacson, O. et al. (1987) Intracerebral grafting of dopamine neurons: 
experimental basis for clinical trials in patients with Parkinson's disease. In Cell and Tissue Transplantation 
into the Adult Brain. Ann. NY. Acad. Sei. USA 495, 473-497 (review). 

R8.       Isacson, O., Pritzel, M., Dawbarn, D., Brundin, P. et al. (1987) Striatal neural transplants in the ibotenic acid 
lesioned rat neostriatum: cellular and functional aspects. In Cell and Tissue Transplantation into the Adult 
Brain. Ann. NY. Acad. Sei. USA 495, 537-556 (review). 

R9.       Björklund A., Lindvall O., Isacson O., Brundin P., Wictorin K, Strecker R.E., Clarke D.J. and Dunnett S.B. 
(1987) Mechanism of action of intracerebral neural implants: studies on nigral and striatal grafts to the 
lesioned striatum. Trends in Neuroscience 10, 509 - 516. 

RIO.     Björklund A., Brundin P. and Isacson O. (1988) Neuronal replacement by intracerebral neural implants in 
animal models of neurodegenerative disease; in "Physiological basis for functional recovery in neurological 
disease" (Ed. S.G. Waxman) Advances in Neurology , Raven Press, N.Y.).vol. 47, 455-492. 

Rll.     Gage FH., Brundin P., Strecker, R., Dunnett, S.B., Isacson, O. and Björklund, A. (1988) Intracerebral neuronal 
grafting in experimental models of age-related motor dysfunction; in "Central Determinants of Age-Related 
Declines in Motor Function". Ann. NY Acad. Sei. 575, 383-393. 

R12.     Dunnett S.B., Isacson O., Sirinathsinghji D.J.S., Clarke D.J. and Björklund A.(1988) Striatal grafts in the 
ibotenic acid lesioned neostriatum: functional studies. In "Neural Transplantation in the Mammalian CNS" 
(Eds D.M. Gash and J.R. Sladek) Prog, in Brain Res. vol 78, Elsevier, Amsterdam,Elsevier, Amsterdam pp. 39- 
47 

R13.     Wictorin, K., Isacson, O., Fischer, W., Nothias, F., Peschanski, M. and Björklund A. (1988) Studies on host 
afferent inputs to fetal striatal transplants inthe excitotoxically lesioned striatum.  In "Neural 
Transplantation in the Mammalian CNS" (Eds D.M. Gash and J.R. Sladek) Prog, in Brain Res. vol 78, 
Elsevier, Amsterdam, pp. 55-61 

R14.     Peschanski, M., Nothias, F., Dusart, I., Isacson, O. and Roudier F. (1988) Reconstruction of the 
cytoarchitecture, synaptology and vascularization of the neuron-depleted thalamus using homotypic fetal 
neurons. In Cellular Thalamic Mechanisms (Eds. Bentivoglio, M. and Spreafico, R.) Elsevier Science pp. 543- 
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R15.     Clarke, DJ., Dunnett, S.B. and Isacson, O. and A. Bjorklund (1988) Striatal grafts in the ibotenic acid- 
lesioned neostriatum: ultrastructural and immunohistochemical studies. In "Neural Transplantation in the 
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and M.A. Sambrook) J. Libbey & Co LTD, London pp. 183-193. 

R18.     Bjorklund, A., Isacson, O., Brundin, P. and Dunnett S.B.( 1989) Nigral and striatal grafts to the lesioned 
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A., Christen Y.) Springer-Verlag, pp 4-20. 
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deprivation and fetal neural transplants. In " Intracerebral grafts and Alzheimer's disease". (Eds Gage F.H., 
Privat A., Christen Y.) Springer-Verlag, pp 177-188. 

R20.     Dunnett, S.B., Bjorklund, A., Brundin, P., Isacson, O. and Gage, F.H. (1990) Transplantation of dopamine cell 
suspensions to the dopamine-depleted neostriatum. In "Parkinsons's disease" (Ed. G. Stern), Chapman Hall, 
London, pp. 239-265 (review). 

R21.     Sofroniew M.V., Dunnett S.B. and Isacson O. (1990) Remodelling of intrinsic and afferent systems in neocortex 
with cortical transplants. In "Neural transplanation: from molecular bases to clinical application" (Eds 
Dunnett S.B. and Richards S.J.) Elsevier Amsterdam, pp 313-320. 

R22.     Isacson, O., Arriagada, P.V. and Hyman, B.T. (1990) Presence of morphologically distinct amyloid protein 
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R23.     Isacson, O. (1990) Rules governing specificity and plasticity of neurons as demonstrated studies of neuronal 
transplants into the mature brain. Medecine/Sciences 6, 863-869. 

R24.     Sofroniew, M.V., Svendsen, C.N. and Isacson, O. (1991) Changes in Basal Forebrain Cholinergic Systems 
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R25.     Isacson, O., Hantraye, P., Riche, D., Schumacher, J.M. and Maziere, M. (1991) The Relationship Between 
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Biological Replacement Therapy in Huntington's Disease. In Intracerebral Transplantation in Movement 
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R26.     Riche, D., Hantraye, P., Isacson, O., and Maziere, M. (1991) A Primate Model of Huntington's Disease: 
Unilateral Striatal Lesions and Neural Grafting in the Baboon. Advances in Behavioral Biology, (eds. 
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J. Seil, ed. (book-review) J. Neurosurg. 75,491-492. 
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R30.     Isacson, O. (1994) Clinical and Preclinical PET Correlates of Parkinsonism with 11C-WIN 35,428. Ann. 
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R32.     Pakzaban, P. and Isacson, O. (1994) Neural xenotransplantation: reconstruction of neuronal circuitry across 

species barriers. Neuroscience 62, 989-1001. 
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R36.     Isacson, O. (1995) Review of "Neuroregeneration." Journal of Chemical Neuroanatomy 9(1), 149-152. 



•   t I • 

Curriculum Vitae 11 Dr. Ole Isacson 

R37.     Freeman, T.B., Sanberg, P.R. and Isacson, O. (1995) Development of the human striatum: implications 
for fetal striatal transplantation.   Cell Transplantation 4, 539-545. 
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Senate: Breakthroughs in Brain Research: A National Strategy to Save Billions in Health Care 
Costs, June 27,1995, Senate Hearing 104-230, pp. 88-99. 

R39.     Isacson, O. (1996) Testimony for Hearing before the Subcommittee on Health and Environment of the 
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Kordower, eds., Academic Press, San Diego, pp. 365-387. 

R54.     Emerich, D.F., Kordower, J.H. and Isacson, O. (1998) Cellular Delivery of Neurotrophic Factors as a Potential 
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Tuszynski and J.H. Kordower, eds., Academic Press, San Diego, pp. 477-504. 
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R57.     Costantini, L.C. and Isacson, 0.(1999) Dopamine neuron grafts: development and molecular biology. In: 
Dopamine Neuron Development, U. di Porzio, R. Pernas-Alonso and C. Perone-Capano, eds., R.G. Landes 
Company, Georgetown, in press. 

R58.     Isacson, O., Costantini, L.C. and Galpern, W.R. (1999) Molecules for neuroprotection and regeneration in 
animal models of Parkinson's disease. In: Innovative animal models of CNS diseases: From molecule to 
therapy, R. Dean and D.Emerich, eds. Humana Press, Totowa, NJ, in press. 

R59.     Isacson, O. (1999) The Neurobiology and Neurogenetics of Stem Cells. Brain Pathol., in press. 
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C. Books and Editing 

" Neural grafting in an animal model of Huntington's disease" 
author : O. Isacson (Dr Med thesis) 
year:1987 
pages: 1-188 
ISBN: 91-7900-258-7 
distribution: Lund University Library, Box 117 Medical Faculty, S-221 00 Lund, Sweden 
or from the author 

"Cell Transplantation for Huntington's Disease" 
author: P. Sanberg, K. Wictorin and O. Isacson 
ISBN: 1-57059-079-6 
publisher: R.G. Landes & Co., Austin, TX 
(1994) 

Total Publications: (161) A. Original articles (99), B. Review articles and chapters (60), C. Books (2) 

RESEARCH LECTURES AND INVITATIONS AS SPEAKER: 

1. Hamburg (1983) at European Neuroscience Association "Monitoring of neuronal survival in suspensions of 
embryonic CNS tissue" (paper) 

2. Cambridge (1984) at University of Cambridge, Downing Site "Functional neuronal replacement in the ibotenic 
acid lesioned neostriatum by neostriatal neural grafts" (lecture) 

3. Lund (1984) at Nordic Meeting in Neuropsychiatry "Functional neuronal replacement in an animal model of 
Huntington's disease" (paper) 

4. Oxford (1984) at Dept. of Pharmacology, University of Oxford "Striatal neural transplant in the 
excitotoxically lesioned neostriatum" (lecture) 

5. Uppsala (1985) at Nordic Physiology Meeting "Neuronal replacement in an animal model of Huntington's 
disease (paper) 

6. München (1985) at Glial-neuronal communication symposia "The use of neural transplants in the study of 
lesion models of the adult CNS" (lecture) 

7. Oxford (1985) at European Neuroscience Association "Morphological and behavioural changes following 
neural grafting in rats with lesions of the anteromedial neostriatum" (paper) 

8. Avoriaz (1986) Symposium at European Winter Congress on Brain Research "Neural replacement by 
intracerebral grafts in animal models of Parkinson's and Huntington's disease" (chairman and lecture) 

9. New York (1986) at New York Academy of Sciences "Morphology and function of striatal neural grafts" 
(lecture) 

10. Düsseldorf (1986) at Dept. of Neurology "The use of neural grafting in studies of CNS development and 
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regeneration" (lecture) 
11. Spetses-ETP (1986) Research program at European Training Program "Autumn School" "The use of neural 

grafting in experimental studies of CNS regeneration and development" (lecturer) 
12. London (1987) at the Royal Free Hospital, Dept. of Psychiatry "Aspects of degeneration and regeneration in 

the adult CNS using intracerebral transplants" (lecture) 
13. London (1987) at Maudsley Hospital, Inst. of Psychiatry "Neural grafting in animal models of 

neurodegenerative disease" (lecture) 
14. Venice (1987) at the 2nd Symposium on Restorative Neurology "The use of fetal neurons to replace neurons in 

the CNS" (lecture) 
15. Rochester, New York (1987) at Neural transplantation into the mammalian CNS meeting " Fetal cortical 

grafts into the excitotoxically lesioned neocortex: a model for trophic interactions in Alzheimer's disease ?" 
(paper) 

16. Pecs, Hungary (1987) at Satelite Symposium on Neural Regeneration and Transplantation "Striatal cell 
suspension grafts in an animal model of Huntington's disease" (paper) 

17. Paris (1987) at Dept of Neurology, Frederic Joliot Hospital, Orsay " A primate model of Huntington's 
disease" 

18. Boston (1988) at Dept. of Neurology, Harvard Medical School, Massachusetts General Hospital "Neuronal 
Transplantation and strategies for CNS regeneration" (seminar) 

19. Paris (1988) at Dept. of Neurology, Frederic Joliot Hospital, Orsay " Excitotoxic lesions models of CNS 
degeneration" (lecture) 

20. Paris (1988) at Dept. of Neurology, Frederic Joliot Hospital, Orsay " The use of neural transplantation in 
patients with neurodegenerative disease: basic research and recent clinical experiments" 

21. Lyon (1988) conference; Trends in Neurobiology "Neuron-target interaction in the CNS: neuronal degeneration 
and regeneration theories" (paper) 

22. Cambridge, England (1989) Neural transplantation meeting: molecular bases to clinical application "Neural 
transplantation in a primate model of Huntington's disease" (paper) 

23. Lund, Sweden (1990) From pharmacological to neuronal replacement in Huntington's disease (paper) 
24. Boston, MA (1990) Excitotoxic lesions of the cerebral cortex model degeneration and plasticity seen in 

neurodegenerative diseases (lecture) 
25. Cold Spring Harbor, N.Y. (1990) The use of genetically engineered cells as donor tissue in models of 

intracerebral transplantation (lecture) 
26. Woods Hole Marine Biology Laboratory (1990) RUNN course lecture: Studies of neuronal cell death and 

regeneration in transplantation models" (faculty) 
27. St. Louis, Missouri (1991) CNS Transplants in Adult Damaged Sensory Thalamus and Neocortex (lecture) 
28. Washington, DC. (1991) at Georgetown University, Neural Transplantation in Animal Models of 

Huntington's Disease (lecture) 
29. Paris (1991) at La Salpetriere Hospital, "Animal Models of Neuronal Protection, Degeneration and 

Regeneration: Concepts of Neuronal Health" (lecture) 
30. Stockholm (1991) at Karolinska Institute, "CNS degeneration and regneration models: new concepts of 

neuronal damage and protection" (lecture) 
31. Nagoya, Japan (1992) at "International Conference on Biochemistry of Disease" (lecture) 
32. Washington (1992) at "IV International Symposium on Neural Transplantation" (lecture) 
33. Brussels (1992) at "25th International Congress of Psychology" (lecture) 
34. Frankfurt (1993) Symposium on anti-excitotoxic therapy: Neuronal protection, gene-transfer and circuitry 

repair in the basal ganglia (lecture) 
35. Hancock, MA (1994) at Third Berkshire Neuroscience Symposium (lecture) 
36. Chatenay-Malabry (Paris) (1994)  at 5th International Symposium on Neural Transplantation (lecture) 
37. Woods Hole, MA (1994) at RUNN Course "Affecting Neural Function by Transplantation" (faculty) 
38. Paris (1995) at ANPP Meeting "Novel Therapeutics in the Nervous System: Gene Transfers and Trophic 

Factors" (lecture) 
39. Chicago, IL (1995) for Rush University Research Week (Keynote speaker) 
40. National Press Club, Washington D.C. (1995). New therapies for Parkinson's disease (lecture) 
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41. U.S. Senate Special Committee on Aging, Washington D.C. (1995). Advisory presentation on Parkinson's 
disease 

42. House Subcommittee on Health and Environment, Washington, D.C. (1995) Advisory presentation on 
Parkinsons disease 

43. Maastricht, Holland (1995) Annual Meeting of NECTAR (lecture) 
44. San Francisco, CA (1996) Annual Meeting of American Diabetes Association (Keynote speaker) 
45. Miami, FL (1996) University of Miami, "Project to Cure Paralysis" (Visitng Professor) 
46. New York, NY (1996) New York Academy of Sciences (lecture) 
47. U.S. Veterans Administration, Washington, D.C. (1997) Advisory presentation on Parkinson's disease 

Chairman, Advisory Committee on Parkinson's disease research 
48. Vienna, Austria (1998) Austrian Parkinson Society, Vienna, "Reconnections of neural circuitry in Parkinson's 

disease patients by xenogeneic dopaminergic neurons." (lecture) 
49. New York, NY (1998) 5th Intl. Congress of Parkinson's Disease and Movement Disorders. "Gene Therapy for 

Parkinsons' Disease", (plenary lecture) 
50. Tokyo, Japan (1998) The Molecular Medicine Revolution Conference, "Neural cell transplants to. 

physiologically repair circuitry in neurodegenerative diesease" (lecture). 
51. Cardiff, Wales (1998) The Physiological Society, "Cell transplantation as a therapy for Parkinson's 

disease" (lecture) I 
52. New York, NY (1999) Cornell Medical School/New York Hospital "Developing nerve cells against 

neurodegeneration" (grand rounds & lecture) 
53. Montreux, Switzerland (1999) The Cell Transplant Society, "Primary neuronal cell transplantation for 

Parkinson's disease (lecture) 
54. Lake Tahoe, NV (1999) Keystone Symposia, "Neural xenotransplantation for neurodegenerative disease" 

(lecture) 
55. Halifax, Nova Scotia (1999) Dalhousie University, Clinical Neuroscience (rounds) and Dept. of Anatomy 

and Neurobiology (lecture) 
56. Pittsburgh, PA (1999) University of Pittsburgh Medical Center, Dept. of Pathology (lecture) 
57. Rochester, NY (1999) University of Rochester, Experimental Therapeutics Workshop (lecture) and Neurology 

Grand Rounds 
58. Vancouver, BC (1999) Xlllth Intl. Congress on Parkinson's Disease (lecture) 
59. Odense, Denmark (1999) 7th Intl. Neural Transplantation Meeting (lecture) 
60. Boston, MA (1999) European Behavioral Pharmacology Society and Behavioral Pharmacology Society 

Conference (lecture) 
61. Vienna (1999) Austrian Parkinson Society (lecture) 
62. Bonn (1999) Intl. Neuroscience Symposium "Molecular Basis of CNS Disorders" (lecture) 
63. London (1999) The Novartis Foundation "Neural Transplantation in Neurodegenerative Disease" 

(Discussant) 


